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Abstract Introduction: Mild-Alzheimer’s disease (AD) subjects without significant Ab pathology represent a
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confounding finding for clinical trials because they may not progress clinically on the expected tra-
jectory, adding variance into analyses where slowing of progression is being measured.
Methods: A prediction model based on structural magnetic resonance imaging (MRI) in combina-
tion with baseline demographics and clinical measurements was used to impute Ab status of a
placebo-treated mild-AD sub-cohort (N 5 385) of patients participating in global phase 3 trials.
The clinical trajectories of this cohort were evaluated over 18 months duration of the trial, stratified
by imputed Ab status within a mixed-model repeated measures statistical framework.
Results: In the imputed Ab-positive cohort, both cognitive (ADAS-Cog14 and MMSE) and
functional (ADCS-iADL) measures declined more rapidly than in the undifferentiated population.
Discussion: Our results demonstrate imputing Ab status from MRI scans in mild-AD subjects may
be a useful screening tool in global clinical trials if amyloid measurement is not available.
� 2016 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The presence of brain b-amyloid (Ab) plaques is a
defining feature of Alzheimer’s disease (AD) and an integral
part of recent diagnostic guidelines for clinical research into
the disorder [1]. Both positron emission tomography (PET)
imaging, using Ab-specific radiotracers such as [11C]-PIB or
[18F]-florbetapir, and measurement of Ab proteins from ce-
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rebral spinal fluid (CSF) samples, are widely used in the
research setting to quantify brain Ab plaque load. Cut points
for positivity have been defined for each of these modalities,
yielding highly convergent results [2,3]. Analysis of Ab
biomarker subgroups in phase 3 clinical trials from two
independent drug development programs revealed that
approximately 27% of subjects meeting clinical inclusion
criteria for mild-AD were Ab-negative [4,5]. The presence
of Ab-negative subjects in trial cohorts represents a
potential confound for two reasons. First, for putative
treatments targeting Ab pathology, the therapeutic target is
not present and hence their clinical trajectories may not be
modified in the same way as Ab-positive subjects. Second,
subjects without core AD pathology may not progress
clinically on the same trajectory as those that do, even in
the absence of treatment. Both these factors may introduce
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variability and dilute a treatment signal in analyses where a
slowing of clinical progression is hypothesized.

Clinical trials of putative therapeutics for AD are increas-
ingly using a baseline measure of brain Ab as an inclusion
criterion. However, PET and CSF methods can be chal-
lenging to implement in global clinical trial sites outside
the western hemisphere, for reasons including patient accep-
tance, cost, and availability. In contrast, magnetic resonance
imaging (MRI) is more widely available and typically
already included in clinical trial protocols for radiologic
monitoring [6]. Recent analytical developments have
demonstrated that Ab status can be predicted to a high accu-
racy in both early and amnestic mild cognitive impairment
(MCI) subjects from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) using a macroscopic pattern of brain struc-
tural deformation obtained from structural MRI data [7,8].
Our aim in the present work was to extend this approach
along the AD continuum by developing an MRI-based Ab-
positive versus negative classifier applicable to mild-AD
subjects and to demonstrate its applicability to structural
MRI data obtained from global clinical trials.

We assessed if Ab status imputed from structural MRIs
could distinguish clinically progressing mild-AD subjects
from nonprogressors in the placebo-treated sub-cohort of
global clinical phase 3 trials. We hypothesized that the clin-
ical trajectories of the subjects imputed Ab-positive would
worsen faster, and those subjects imputed Ab-negative
would worsen substantially slower than the full data set.
2. Methods

2.1. Population and clinical instruments

The primary data set for this study was drawn from the
mild-AD subset (Mini-Mental State Examination [MMSE]
score between 20 and 26, inclusive, at baseline) from two
phase 3 trials EXPEDITION and EXPEDITION 2 (hereafter
referred to as the EXPEDITION trials). All subjects in the
EXPEDITION trials received a structural MRI scan at base-
line.

Classifier development and training were performed us-
ing baseline data from the 194 mild-AD subjects from the
Ab PET sub-study of the EXPEDITION trials who had a
baseline florbetapir-PET scan (both placebo and treatment
arms). The classifier was then applied prospectively to
impute Ab status of N5 385 placebo-treated mild-AD sub-
jects from the EXPEDITION trials who did not have a
florbetapir-PET scan at baseline.

An additional 75 cognitively normal (CN) elderly individ-
uals from the ADNI study were included to model normal co-
founding effects of age, gender, and education. CN subjects
hadMMSE scores between 24 and 30, a clinical dementia rat-
ing (CDR) of 0, no evidence of depression, and no memory
complaints. Previous studies reported that the cumulative
and regional Ab burden in CN subjects correlate with
regional brain atrophy [9–11]. Furthermore, CN subjects at
genetic risk for AD by virtue of the apolipoprotein E
(APOE) ε4-allele demonstrated regional brain atrophy differ-
ences relative to APOE ε4-noncarriers [12,13]. Therefore, we
included only the APOE ε4-noncarrier ADNI CN subjects
who were identified as Ab-negative using PiB-PET and had
structural MRI data from 1.5-Tesla scanners. A PiB cutoff
of 1.47 from the study of Jagust et al. [14] was applied to
identify PiB-negative ADNI CN subjects. Consistency in
the positive-negative categorization using PiB and florbetapir
radioligands was previously reported [15].

2.2. Instruments for assessing clinical progression

The primary hypothesis of this study was tested on three
clinical instruments: MMSE and Alzheimer’s Disease
Assessment Scale-Cognitive subscale (ADAS-Cog14) were
used to assess global cognitive abilities, and the Alzheimer’s
Disease Cooperative Study–instrumental Activities of Daily
Living Inventory (ADCS-iADL) scale was used to evaluate
global function. ADAS-Cog14 and ADCS-iADL were as-
sessed at baseline and weeks 12, 28, 40, 52, 64 and 80,
and MMSE was assessed at baseline and weeks 28, 52 and
80 from baseline.

2.3. Image data acquisition

Structural MRI scans from the EXPEDITION trials were
acquired using a uniform scanning protocol that minimized
and accounted for between-site differences in MRI systems.
Data from 1.5 Tesla scanners manufactured by Siemens
(Symphony, Espree or Avanto), General Electric (Excite),
or Philips (Intera or Achieva) were used in the present anal-
ysis. A total of 184 1.5 T imaging sites across 16 countries
were qualified, of which 44% were in North America, 24%
in Europe, 19% in Asia and Russia, and 13% in South Amer-
ica. Data from 3.0 T scanners were excluded as there were
insufficient subjects to train and test a classifier (Further de-
tails in Supplementary Material).

Structural MRI scans from the ADNI study were down-
loaded from the official study site: http://adni.loni.usc.edu/.
Participants underwent a standardized 1.5 Tesla MRI
protocol (http://adni.loni.usc.edu/methods/mri-analysis/mri-
acquisition/) (Further details in Supplementary Material).

2.4. Florbetapir-PET processing

N 5 194 subjects within the EXPEDITION trials were
part of the Ab PET sub-study and received a florbetapir-
PET scan at baseline. The florbetapir-PET scan comprised a
20 minute acquisition period beginning 50–60 minutes
following 10 mCi injection of the florbetapir tracer and the
images were processed as detailed previously [16,17] and a
composite standardized uptake value ratio (SUVR) value
calculated using a set of pre-specified cortical regions of inter-
est and the whole cerebellum as the reference region (Further
details in Supplementary Material). Ab-positivity or nega-
tivity was then determined using a threshold of 1.1 [16].

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
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2.5. MRI processing

Skull, scalp, and extra-cranial tissue were removed from
each structural MRI using the automated Brain Surface
Extraction software [18], followed by manual refinement if
required. To avoid bias towards a particular subject’s geome-
try in the analysis of anatomical shape variations, we used the
data from 75 ADNI CNs to create a study-specific unbiased
large deformation brain image template (ULD-template) by
applying a framework of large deformation diffeomorphic
metric mapping (LDDMM) as described in full elsewhere
[19]. ULD-template generation incorporated an unbiased
approach where all brain images were first simultaneously
affine transformed to adjust for global variations in brain
positioning and scale, and then simultaneously deformed.
Structural-MRI of each mild-AD subject was first affine
aligned and then nonlinearly warped to this ULD-template
using the LDDMM framework. The LDDMM was modeled
as an evolution in time, with an associated smooth velocity
vector field controlling this evolution. A scalar initial mo-
mentum map parameterized the entire geodesic with which
the optimal trajectory emanated from the ULD-template to
reach a subject brain image on a Riemannian manifold of dif-
feomorphism [19]. These momentum maps uniquely en-
coded the anatomical shape variations of individual brains
relative to the ULD-template. The details of this processing
framework is previously described in detail elsewhere
[19,20], and are provided in the Supplementary Material.

We used a general linear model–based detrending method
to control for any normal confounding effects of age, sex,
and education, based on PiB-negative and APOE ε3/ε3 CN
subjects. Adjusted imaging measures of anatomical shape
variation from mild-AD subjects were used for further data
analyses.
2.6. Structural MRI-based Ab score (MRI-BAS)

High-dimensional data, such as voxel-based MR images,
based on a relatively small number of participants inherently
comes with significant co-dependencies and contain a large
number of association patterns, most of which are erroneous
or redundant. Our goal was to identify which of these are sig-
nificant associations, with high predictive power. Partial
least squares (PLS) regression [21] has the ability to handle
high-dimension, low sample size, multicollinear data, while
searching for modes that explain the maximum covariance
between the explanatory and response spaces. The PLS
regression is a supervised dimensionality reduction tech-
nique based on a latent decomposition model. Furthermore,
unlike commonly used multivariate latent decomposition
approaches such as principal component regression or ca-
nonical correlation analysis [22], where the dimensionality
reduction of the data is carried out independent of the
response variable by maximizing the variance within the re-
gressors alone, PLS models the regression by maximizing
the covariance between the regressors and response. The
latent components are extracted in the regressor and
response data spaces such that the covariance between the
two is maximized. We used PLS regression with the anatom-
ical shape variation measures from each and every imaging
voxel as regressors and florbetapir-SUVR as the response to
assess the patterns of structural MRI-Ab associations. The
statistical significance of the structural MRI-Ab associations
inferred by PLS regression was assessed using the projected
data and non-parametric permutation testing.

Furthermore, a MRI-based Ab score (MRI-BAS) was
calculated by projecting each individual’s neuroimaging
data onto the latent variable (LV) inferred by the correspond-
ing PLS regression. Specifically, the PLS regression is a su-
pervised dimensionality reduction technique based on a
latent decomposition model. This is done by extracting a
small number of latent components or projection scores
that are linear combinations of the original variables to avoid
multicollinearity. PLS models the regression by maximizing
the covariance between the regressors and response. The
latent components are extracted in the regressor and response
spaces such that the covariance between the two is maxi-
mized. In this study, the response spaces is defined by the
florbetapir-SUVR measures and the regressor space is
defined by the anatomic shape variation measures from AD
subjects with florbetapir-PET scans (i.e., training cohort).
2.7. Derivation of classifier

In the derivation of an Ab-positivity classifier, the depen-
dent outcome variable was the Ab-positive versus negative
dichotomization, based on florbetapir-PET scans and an es-
tablished standardized florbetapir-SUVR threshold [16].
The MRI-BAS, age, sex, education, baseline clinical mea-
sures including MMSE, ADAS-Cog, Alzheimer’s Disease
Cooperative Study-Activities of Daily Living Inventory
(ADCS-ADL), and CDR-SB, and APOE genotype with
dose effect were the independent predictor variables. Several
of these predictors were highly correlated with each other. In
particular, MMSE score was significantly correlated with
years of education (r 5 0.22; P 5 .002), ADCS-ADL
(r 5 0.27; P 5 .0001), and ADAS-Cog (r 5 20.46;
P , 10210); ADCS-ADL score was also significantly corre-
lated with baseline age (r520.16; P5 .02) and ADAS-Cog
(r 5 20.34; P , 1025). Traditional linear regression is
known to produce unstable parameter estimates in the pres-
ence of highly inter-correlated variables, thus leading to
regression findings that fail to generalize well to new data
sets [23,24]. Regression with least absolute shrinkage and
selection operator (LASSO) reduces this instability by
pushing regression parameter estimates closer to zero, thus
resulting in more conservative parameter estimates. In
addition, this conservative parameter biasing obviates the
need for multiple comparison correction [24]. To create a
mathematical function that best combines the MRI-BAS, de-
mographics (i.e., age, sex, and education), baseline cognitive
data, and APOE genotype to give a binary prediction of Ab-



Table 1

Characteristics of training and testing cohorts

Factors

ADNI CN

e3/e3 Ab

negative

(training)

EXPEDITION

mild-AD with

florbetapir-PET

scan (training)

EXPEDITION

mild-AD

(testing)

N 75 169 385

Age (y) 75.18 6 5.28 73.64 6 8.77 72.94 6 7.48
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positivity in mild-AD individuals, we based our classification
model on a logistic regression with LASSO.

For 10-fold cross-validation of the classifier performance,
the data were divided into ten subsets of cases that had
similar size and Ab-positive/negative distributions. Each
subset was left out once, whereas the other nine was applied
to construct the classifier, which was subsequently validated
for the unseen cases in the left-out subset. Classifier perfor-
mance assessment was based on classification accuracy
(CA), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). Performance
of the best performing classifier with non-MRI factors was
referenced to test the added-value of structural MRI in clas-
sification of Ab-positive/negative mild-AD. The significance
of the prediction performance of these measures compared
with randomly generated variables with N(0,1) distribution
was assessed via 50,000 simulations. Once the best non-
MRI predictors were identified through these model compar-
isons, a final model based on elastic net parameter was
created with an optimization criterion of maximal PPV.

2.8. Application of classifier to subjects without Ab scans

The best performing classifier based on training data set
was then applied to impute the Ab status of mild-AD sub-
jects from the placebo arms of the EXPEDITION trials
that had an analyzable 1.5-T structural MRI but no FBP-
PET scan.

2.9. Statistical analysis for clinical trajectories

Although training of the classifier on baseline (pre-treat-
ment) scans used subjects from both placebo and treatment
arms (N 5 169), we only assessed cognitive trajectories
only from placebo-treated subjects in this study (N 5 127
with known florbetapir status and N5 385 with imputed flor-
betapir status). Declines in cognitive and functional measures
over the 18-month study were assessed as least square means
(LS means) of change from baseline to 18 months (week 80).
Cognitive decline over 18 months was assessed using the
ADAS-Cog14 and MMSE with between group comparisons
made using a mixed-effects repeated-measures (MMRM)
model adjusted for study, baseline score, age, Ab imputation
(yes/no), Ab status (positive/negative), visit, and concurrent
use of an acetylcholinesterase inhibitor (AChEI) or meman-
tine. The same model was used to functional decline using
ADCS-iADL. All data analyses were carried out using
SAS, version 9.2 (SAS Institute Inc, Cary, NC).
Gender (Female, %) 49.33 57.99 54.80

Education (y) 15.52 6 2.85 13.38 6 3.65 12.44 6 4.06

APOE ε4 status

(0/1/2)

75/0/0 78/74/17 138/191/56

Ab-positive (%) 0 % 72.78% Unknown

MMSE 29.00 6 1.12 22.78 6 1.88 22.48 6 2.81

ADAS-Cog14 — 29.96 6 9.74 29.34 6 8.15

ADAS-Cog13 9.29 6 4.02 — 29.09 6 7.96

ADCS-ADL — 62.83 6 11.20 64.20 6 10.74

CDR-SB 0.00 6 0.00 4.32 6 1.73 4.36 6 2.18
3. Results

3.1. Demographic characteristics

The cohort of EXPEDITION mild-AD subjects with
baseline 1.5-T structural MRI and florbetapir-PET scans
comprised 194 subjects. Of these, 12 failedMRI quality con-
trol (unsuitable for whole brain shape analysis due to large
cortical stroke, cysts, white matter lesions, or diffused imag-
ing artifacts including ringing, motion, and ghosting) and an
additional 13 had no APOE status. Consequently, 169 sub-
jects (N 5 123 Ab-positive and N 5 46 Ab-negative)
were used as the training cohort to develop the classifier.

Demographic characteristics of these 169 mild-AD sub-
jects along with CN subjects in the training cohort are sum-
marized in Table 1. On average CNs were significantly more
highly educated than mild-AD patients (t 5 4.9481,
df 5 178.739, P value 5 1.722e206), although still in the
same age range with similar gender distribution.

3.2. Structural MRI-Ab associations

Fig. 1 shows the spatial signature of the LV inferred by
PLS regression, that is, anatomic shape variation signature
of brain Ab-burden in mild-AD. Dark red, blue, and white
colors indicate greater contribution of the local anatomic
shape variations to the latent variable and therefore to the
structural MRI-Ab association. Specifically, increased
florbetapir-SUVR was associated with anatomic shape vari-
ations largely in the parieto-temporal cortical regions
including precuneus, supramarginal, inferior parietal, hippo-
campus, superior temporal, and to a lesser extend in the fron-
tal lobe regions (r 5 0.93; P , .0001).

3.3. Selection of predictor variables and classifier training

Estimated performances of the LASSO-penalized logis-
tic regression classifiers with non-MRI variables (i.e., age,
sex, years of education, clinical measures, and APOE-ε4
genotype) alone and jointly with MRI-BAS are reported
in Table 2. All classifiers considered in this study per-
formed significantly better than chance (P , .01). Pure
MRI-BAS based classifier, with 79% accuracy, 92% sensi-
tivity, 44% specificity, 82% PPV, and 68% NPV, outper-
formed all the non-MRI classifiers considered in this
study. A multidisciplinary classifier combining demo-
graphics, baseline clinical measures, APOE ε4-genotype,



Fig. 1. Pattern of structuralMRI–Ab associations inmild-AD subjects. Dark red, blue, and white colors indicate greater contribution of the local anatomic shape

variations to the structural MRI–Ab association.
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and MRI-BAS reached 81% classification accuracy, 95%
sensitivity, 45% specificity, 82% PPV, and 80% NPV in
identifying Ab-positive mild-ADs. The biggest improve-
ment compared to MRI-BAS only classifier was in NPV
of the classifier. Based on LASSO-penalized regression
analysis, among demographic characteristics, age was
the best predictor of Ab-positivity, and among baseline
clinical characteristics, MMSE and ADAS-Cog are the
best predictors of Ab-positivity.

With age, MMSE, ADAS-Cog, APOE genotype, and
MRI-BAS as the predictors, a final classifier model based
on elastic net parameter optimization for the best PPV
yielded a classifier accuracy of 83%, with 94% sensitivity,
55% specificity, 85% PPV, and 78% NPV. Furthermore,
when applied to the test cohort, the classifier imputed 64%
of the APOE ε4 noncarriers and 97% of the APOE ε4 carriers
in the mild-AD cohort as florbetapir-positive. We compared
the predictive power of the final classifier model to those of
hippocampal volume, the most relevant candidate imaging
biomarker for the prediction of brain amyloidosis. Intracra-
nial vault volume–adjusted hippocampal volumes,
generated by Surgical Navigation Technologies (6) as
described in the Supplementary Material, when combined
with the non-imaging variables yielded accuracy, sensitivity,
Table 2

Performance of LASSO-penalized logistic regression classifiers with non-MRI fa

Predictors ACC SE

MRI-BAS 0.79 6 0.03 0.9

Demog 0.71 6 0.01 0.9

Demog, APOE 0.70 6 0.01 0.9

Cogn 0.72 6 0.01 0.9

Cogn, APOE 0.76 6 0.01 0.9

Demog, Cogn 0.76 6 0.01 0.9

Demog, Cogn, APOE 0.76 6 0.01 0.9

MRI-BAS, Demog 0.78 6 0.02 0.9

MRI-BAS, Demog, APOE 0.80 6 0.03 0.9

MRI-BAS, Cogn 0.79 6 0.04 0.9

MRI-BAS, Cogn, APOE 0.81 6 0.03 0.9

MRI-BAS, Demog, Cogn 0.78 6 0.02 0.9

MRI-BAS, Demog, Cogn, APOE 0.81 6 0.03 0.9

Final model: Age, MMSE, ADAS-Cog, APOE,

and MRI-BAS

0.83 6 0.03 0.9

Abbreviations: Demog, Age, gender, education; Cogn, baseline clinical measur

fication accuracy; SENS, classification sensitivity; SPEC, classification specificity
specificity, PPV and NPV of 78% (611%), 88% (612%),
46% (627%), 82% (610%), and 59% (633%) respectively.

The demographic characteristics of the known and
imputed florbetapir-positive cohorts are summarized in
Supplementary Material (Supplementary Table 1). On
average the mild-AD patients with known florbetapir-
positive status were significantly more educated than the
mild-AD patients with imputed florbetapir-positive status
(t 5 3.86, P 5 .0001526).
3.4. Clinical trajectories of subjects imputed Ab-positive
versus Ab-negative

With no discrimination based on Ab status, the test mild-
AD cohort exhibited the expected clinical decline on each
of the measures, approximately 14.4 points on ADAS-
Cog14, 22.0 points on MMSE, and 24.7 points on ADCS-
iADL at 80 weeks based on LS means estimation from
MMRM (Fig. 2, Table 3). When stratified based on Ab status
as imputed by the classifier, subjects with negative-imputed
Ab status evidenced notably flat trajectories for all clinical
instruments evaluated and did not progress significantly
over 80 weeks on either the ADAS-Cog14, MMSE, or
ADCS-iADL measures. In contrast, subjects with imputed
ctors jointly with sMRI-BAS

NS SPEC PPV NPV

2 6 0.03 0.44 6 0.10 0.82 6 0.02 0.68 6 0.10

5 6 0.01 0.09 6 0.02 0.73 6 0.01 0.45 6 0.03

0 6 0.01 0.17 6 0.02 0.74 6 0.01 0.39 6 0.05

3 6 0.01 0.20 6 0.01 0.75 6 0.01 0.56 6 0.03

2 6 0.01 0.33 6 0.02 0.78 6 0.01 0.66 6 0.02

2 6 0.01 0.34 6 0.02 0.78 6 0.01 0.66 6 0.02

1 6 0.01 0.38 6 0.02 0.79 6 0.01 0.65 6 0.01

5 6 0.04 0.33 6 0.11 0.79 6 0.03 0.76 6 0.10

5 6 0.03 0.41 6 0.12 0.81 6 0.03 0.79 6 0.09

5 6 0.03 0.36 6 0.10 0.80 6 0.03 0.74 6 0.12

4 6 0.02 0.46 6 0.09 0.82 6 0.03 0.76 6 0.07

5 6 0.03 0.34 6 0.08 0.80 6 0.02 0.77 6 0.10

5 6 0.02 0.45 6 0.10 0.82 6 0.03 0.80 6 0.09

3 6 0.02 0.61 6 0.09 0.84 6 0.02 0.79 6 0.07

es including MMSE, ADAS-Cog, ADCS-ADL, and CDR-SB; ACC, Classi-

; PPV, Positive predictive value; NPV, Negative predictive value.
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Ab-positive status progressed more rapidly than the full, non-
stratified cohort, changing by 17.3 points on ADAS-Cog14,
23.6 points on MMSE, and 28.1 points on ADCS-iADL
based on LSmeans estimation fromMMRM. The differences
in the changes in the imputed Ab-positive and imputed Ab-
negative samples were significant for all three instruments at
the 80-week time point based on MMRM (P, .01).

The trajectories for the full data set (including both
imputed Ab-positive and Ab-negative subjects) were inter-
mediate between those different imputed Ab status sub-
groups.

3.5. Comparison of trajectories between known and
imputed Ab-positive and negative

The clinical trajectories over 80 weeks observed for sub-
jects imputed Ab-positive or negative (test set) were very
similar to those observed for subjects whose Ab status was
known (training set) as shown in Fig. 3. The least squares
mean differences were not statistically significant at any
time point for any of the clinical measures.

4. Discussion

The major findings of this study were (1) florbetapir-
positive mild-AD subjects could be identified with a
classifier accuracy of 83% (cf. 79% with MRI-BAS alone),
with 94% sensitivity, 55% specificity, 85% PPV, and 78%
Fig. 2. Change from baseline in clinical variables over 80 weeks for placebo-tr

squares, N 5 56) or Ab-positive (blue circles, N 5 329), and the full test mi

MMSE, and (C) ADCS-iADL. P values refer to the comparison between the imp

80-week time point).
NPV by a multidisciplinary classifier based on age,
MMSE, ADAS-Cog, APOE genotype, and MRI-BAS as
the predictors and (2) subjects imputed Ab-positive declined
faster than the full undifferentiated placebo-treated cohort,
whereas those imputed Ab-negative showed stable cognition
and function over the 18-month trial duration. Amyloid PET
and CSF methods can be challenging to implement outside
the western hemisphere, for reasons including patient accep-
tance, cost, and availability. Taken together, our results
demonstrate imputing Ab status from MRI scans in mild-
AD subjects may be a useful screening tool in global clinical
trials if Ab PETor CSF is not available. Furthermore, multi-
modal approaches including MRI may also offer cost advan-
tages for eventual clinical use, either as a proxy for a direct
measure of amyloid status after traditional diagnostic stan-
dard of care or as a screening technique before a confirma-
tory amyloid biomarker test.

The first finding of this study was that using structural
MRI, basic demographics, baseline cognitive/clinical mea-
sures, and APOE genotype data, we could achieve an 83%
classification accuracy, with 94% sensitivity, 55% speci-
ficity, 85% PPV, and 78% NPV in identifying florbetapir-
positive mild-AD patients. This multidisciplinary classifica-
tion model outperformed other classifiers considered in this
study using non-MRI factors.

We previously pursued the use of MRI data in predict-
ing wide-spread brain Ab deposition in individuals with
eated subjects from the EXPEDITION trials imputed as Ab-negative (red

ld-AD population (gray triangles, N 5 385), for (A) ADAS-Cog14, (B)

uted-positive and imputed-negative subgroups (MMRM model, shown for



Table 3

Change from baseline in clinical variables.80 weeks based on MMRM for placebo-treated subjects from the EXPEDITION trials with imputed or known Ab

status (Mild-AD)

Instrument Cohort* Group

Least square means change

at 80 weeks (points)

Amyloid-positive vs. negative

at 80 weeks

ADAS-Cog14 Training (N 5 127) Ab-positive (known, N 5 93) 6.78 P 5 .0021

Ab-negative (known, N 5 34) 20.63

Testing (N 5 385) Ab-positive (imputed, N 5 329) 7.29 P 5 .0012

Ab-negative (imputed, N 5 56) 1.46

All (N 5 385) 4.37 —

MMSE Training (N 5 127) Ab-positive (known, N 5 93) 23.56 P , .0001

Ab-negative (known, N 5 34) 1.16

Testing (N 5 385) Ab-positive (imputed, N 5 329) 23.57 P , .0001

Ab-negative (imputed, N 5 56) 20.41

All (N 5 385) 21.99 —

ADCS-iADL Training (N 5 127) Ab-positive (known, N 5 93) 26.62 P 5 .0142

Ab-negative (known, N 5 34) 21.28

Testing (N 5 385) Ab-positive (imputed, N 5 329) 28.09 P , .0001

Ab-negative (imputed, N 5 56) 21.23

All (N 5 385) 24.66 —

Abbreviations: ADAS-Cog14, Alzheimer’s Disease Assessment Scale-Cognitive subscale; MMSE, mini-mental state examination; ADCS-iADL, Alz-

heimer’s Disease Cooperative Study–Instrumental Activities of Daily Living Inventory.

*Sample sizes quoted are those at the 80-week time point.
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early MCI [7] and amnestic MCI [8]. Although our mild-
AD Ab-positivity prediction model showed similar perfor-
mance in terms of classification accuracy, PPV, and NPV
with slightly better performance in sensitivity compared
to previously proposed early-MCI and MCI Ab-positivity
prediction models, its specificity was lower than the spec-
ificity of early MCI and MCI Ab-positivity prediction
models (55% versus 87.6% in early MCI and 92.82% in
MCI). An explanation for the poor specificity of the pro-
posed mild-AD Ab-positivity prediction model could be
that the class sizes (florbetapir-positive versus
florbetapir-negative) in the training data differed consider-
ably (73% Ab-positive mild-AD versus 50% early MCI
and 66% MCI). When the class sizes are very different,
most standard classification algorithms may favor the
larger (majority) class resulting in poor accuracy in the
minority class prediction. One unique aspect of the pro-
posed mild-AD Ab-positivity prediction model is that un-
like the other models, this model was trained and tested on
clinical trial data that were generated not just at high-end
sites in North America but at trial sites world wide. This
makes it feasible for global trial applications.

In practice, given that structural MRI scans are acquired
routinely in clinical trials for other purposes, an MRI-
based amyloid classifier might be useful as a screening
tool that could be applied before confirmation with a CSF
or PET biomarker that directly measures amyloid status, to
reduce the number of amyloid-negative subjects undergoing
those more expensive and/or invasive procedures. In the pre-
sent study, the inclusion of MRI shape change information
yielded increased classification performance when
compared to classifiers based solely on non-imaging data
(e.g., demographics, cognition, APOE genotype). However,
the generalizability and reliability of MRI-based classifiers,
and their applicability at the individual subject level, warrant
further investigation.

The second finding of this studywas that the latent variable
structure underlying the anatomical shape variations and Ab
burden associations was dominated by the hippocampus,
parieto-temporal cortical regions including precuneus, supra-
marginal, inferior parietal, superior temporal, and to a lesser
extent areas in the frontal lobe regions. There is an emerging
literature investigating Ab-related brain changes using struc-
turalMRI, describing an association betweenAb burden (e.g.,
low CSFAb1–42 or high Ab-PET binding) and atrophy, espe-
cially of the parietal and posterior cingulate regions, extend-
ing into the precuneus and medial temporal regions
including hippocampus, amygdala, and entorhinal cortex.
This parietotemporal dominant pattern of Ab-atrophy associ-
ation is even evident at mild stages of cognitive deficits
[10,25–33]. Our study does not explain the mechanisms
behind the detected Ab-related structural variations. There
are several interpretations to the latent variable structure
underlying the anatomic shape variations and Ab burden
associations. One possible interpretation is that the Ab
burden associated anatomic shape variations are due in part
to direct Ab toxicity [34]. The “Ab hypothesis” [35,36]
posits that accumulation of Ab is primarily responsible for
the accumulation of tau tangles, synaptic dysfunction,
neurodegeneration, and cognitive decline especially in
memory function, which characterizes AD. There is
considerable evidence from animal and in vitro studies
demonstrating that soluble Ab oligomers, fibril Ab, and Ab
plaques have adverse effects on neuronal function [34]. The
second possible interpretation, not mutually exclusive, comes
from pathologic studies, especially those of Braak et al.
[37,38], showing that during the development of AD
pathology, tau tangles increase, associated with synapse loss



Fig. 3. Comparison of clinical trajectories of (A) ADAS-Cog14, (B) MMSE, and (C) ADCS-iADL for placebo arm subjects from the EXPEDITION trials,

stratified by known Ab status (training set, N5 93 positive, and N5 34 negative) and by imputed Ab status (test set, N5 329 positive, and N5 56 negative).
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and neurodegeneration, while at the same time, widespread
neocortical Ab plaques are developing; therefore, the
anatomic shape variation pattern could be an indirect
measure of widespread neurodegeneration due to increased
Ab burden.

The third finding of this study was that the presence of
Ab does affect the trajectory of clinical decline, and this oc-
curs independently of the method used to stratify patients
based on Ab status, that is, direct Ab status assessment
via florbetapir-PET imaging versus imputing Ab status
from multidisciplinary data including structural MRI
(Figs. 2 and 3 and Table 3). The fact that the brain Ab
accelerated the cognitive and clinical decline regardless of
the person’s diagnosis has been reported in research cohorts
as well [39–41]. Thirty six–month follow-up data from
more than 1000 ADNI participants showed that participants
whose brains were free of Ab stayed stable on cognitive
tests, including the ADAS-Cog11, MMSE, and CDR-SB
[39]. In contrast, people with positive Ab scans declined,
with MMSE scores diverging significantly from Ab nega-
tives at 6 months, and ADAS-Cog11 scores at 24 months
[39], similar to what we observed in these global clinical
trial data (Figs. 2 and 3). Moreover, data from Australian
Imaging, Biomarker, and Lifestyle Flagship Study of
Ageing study also showed that people without brain Ab
remained cognitively stable over 3 years follow-up period,
regardless of their diagnosis. On the other hand, people
with Ab all declined at about the same average rate, again
regardless of diagnosis [41]. Taken together these results
demonstrate that the presence of brain Ab hastens the tra-
jectory of cognitive or clinical decline. Both research and
clinical trial data have shown that patients selected by clin-
ical diagnosis alone may lack underlying AD pathology.
This observation leads many current clinical trials and re-
searchers to screen potential participants for Ab pathology
either via PET scanning or CSF sampling to ensure that
the patient’s clinical presentation is most likely due to
AD. It should also be noted that brain Ab may explain
only some of the individual variation in cognitive and/or
clinical decline.

There were several limitations of the present study. First,
findings from the EXPEDITION trials may not precisely
generalize to a general population because the predictive
performance of the final classifier model was assessed using
cross-validation. This, or related, approaches would need to
be prospectively tested and refined for ease of use, espe-
cially for applicability in the clinical care setting. Second,
the set of candidate independent predictor variables consid-
ered in this study for Ab-positivity may not represent an
exhaustive list of factors predictive of Ab-positivity. There-
fore, a certain sub-population might have been over-
represented in the imputed Ab-positive cohort, biasing the
clinical and/or cognitive decline trajectories. Third limita-
tion of this study is that we optimized the classifier based
on PPV, not NPV, to maximize the probability that subjects
included would be Ab-positive, thus minimizing the
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dilutive contribution of amyloid negative nonprogressors.
This strategy does result in some Ab-positive subjects being
excluded but should maximize the fraction of Ab-negative
subjects excluded. Fourth, a methodologic limitation is that
the LASSO is only one among several machine-learning al-
gorithms that have been used in medical imaging. It is
possible that using other established algorithms, such as
support vector machines or random forest, yields a different
outcome. We chose the widely used LASSO algorithm
because it shrinks some parameters toward zero, stabilizing
parameter estimates in the presence of highly inter-
correlated variables and allowing an easy interpretation of
the models and straightforward identification of those pa-
rameters most strongly related with the outcome. Finally,
instrument-related factors such as MR scanner manufac-
turer and model can influence the reliability of MRI-BAS
and therefore the performance of the proposed final
florbetapir-positivity classifier model. Our preliminary
assessment indicated that there might be MR scanner
manufacturer-specific differences in predictive perfor-
mance of the final classifier model. However, the sample
sizes available in this study (i.e., N5 78 from GE scanners
versus N 5 32 from Philips scanners versus N 5 59 from
Siemens scanners) and the uneven florbetapir-positivity dis-
tribution within the manufacturer-specific samples limit our
ability to perform a comprehensive assessment of effects of
MR scanner manufacturer/model on predictive perfor-
mance of the final classifier model using data from the
EXPEDITION trials alone.

In summary, we defined an Ab-positivity prediction
model for mild-AD patients recruited in a global clinical
trial. We detected accelerated clinical decline both in sub-
cohorts with known Ab status from florbetapir-PET scans
and also in patients who were imputed Ab-positive based
on a structural MRI signature of Ab-positivity and non-
MRI factors including demographics, baseline clinical mea-
sure, and APOE genotype data. The presence of Ab-negative
subjects in clinical trial cohorts represents a potential
confound, introducing variability and possibly diluting any
treatment signal. For treatments targeting Ab pathology,
Ab-negative subjects do not have the therapeutic target;
hence, their clinical trajectories may not be modified in the
same way as Ab-positive subjects. Furthermore, Ab-nega-
tive subjects may not progress clinically on the same trajec-
tory as those that do even in the absence of treatment.
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RESEARCH IN CONTEXT

1. Systematic review: A low-cost, accessible, and effi-
cient screening tool for Ab-positivity is needed in
global clinical trials. Analysis of Ab biomarker
subgroups in phase 3 clinical trials from two inde-
pendent drug development programs revealed that
approximately 27% of subjects meeting clinical in-
clusion criteria for mild-AD were Ab-negative. Ab-
negative mild-AD subjects are not expected to
progress clinically on the expected trajectory, adding
variance into analyses where a slowing of progres-
sion is being measured.

2. Interpretation: This work confirms that in a placebo-
treated Ab-positive mild-AD cohort, either imputed
or measured by Ab-PET, both cognitive and func-
tional measures declined more rapidly than the un-
differentiated population, whereas those imputed
Ab-negative showed stable cognition and function.

3. Future directions: Future studies should take into ac-
count Ab-positivity status when assessing the effi-
cacy of treatments targeting Ab pathology.
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